跳转到主要内容

【大语言模型】如何在Python中使用开源Whisper ASR

Whisper是最先进的自动语音识别(ASR)系统,是OpenAI的创意。它的目的是将口语转录成书面形式,这一过程有多种用途,包括从转录服务到语音控制助理的所有内容。这个答案将阐明如何使用Whisper ASR系统的开源版本,特别是在Python中。

设置环境

在理解代码之前,确保一个最佳的环境是很重要的。这需要在您的系统上安装Python,以及Whisper Python包。后者可以使用pip安装:

pip install -U openai-whisper

安装Whisper

此外,有必要安装FFMPEG,这是一个命令行实用程序,旨在处理包括音频和视频在内的多媒体文件。根据您系统的操作系统,可以使用相应的软件包管理器进行下载和安装。

【大语言模型】如何用Whisper转录音频:2023年综合指南

在当今快节奏的数字世界中,将口语转换为书面文本已成为专业人士和个人的宝贵工具。无论你是记录采访的记者、记录讲座的学生,还是记录会议的商业专业人士,准确转录音频的能力都至关重要。进入由OpenAI最先进的Whisper模型提供支持的音频API,这是语音转文本技术领域的游戏规则改变者。

音频API包含两个强大的端点:转录和翻译。这些都建立在Whisper大v2模型的基础上,该模型以擅长处理各种语言任务而闻名。这个工具不仅仅是将音频转录成文本;它还能够将各种语言的口语翻译成英语。无论您是处理播客、重要的商务电话还是多语言会议,Audio API都能满足各种需求。

在深入探讨如何使用这项尖端技术的细节之前,重要的是要注意几个关键方面。API目前支持高达25 MB的文件上载,可容纳常见的音频格式,如mp3、mp4、mpeg、mpga、m4a、wav和webm。这种灵活性确保了大多数标准音频文件可以在不需要fr转换的情况下轻松处理。

Whisper是开源的。基于大规模弱监督的鲁棒语音识别:https://github.com/openai/whisper

【大音频模型】使用Distille Whisper AI轻松进行音频转录

在这篇文章中,我们介绍并分解了Distil Whisper:一个新版本,它为音频转录提供了高达6倍的Whisper模型运行速度。

深度学习技术一直在快速发展,并已成为我们日常生活中的关键参与者,尤其是在这个语音到文本应用的时代。无论是为自动人工智能呼叫系统、SIRI或Alexa等语音助手供电,还是与搜索引擎无缝集成:这一功能都显著增强了用户体验。它的广泛采用使它成为我们生活中不可或缺的一部分。

作为开源人工智能领域的有力竞争者,音频语音识别(ASR)模型Whisper by OpenAI获得了巨大的人气。它的有效性水平与其他生产级模型相当,同时用户可以零成本访问。此外,它还为用户提供了一系列预先训练的模型,以利用人工智能的力量转录和翻译任何音频片段。

在这篇文章中,我们将看看最近发布的Distil Whisper项目。Whisper型号的最新迭代提供了高达6倍的运行速度。在本文中,我们将更深入地研究这个模型版本,是什么使它成为可能,然后以代码演示结束。

花点时间浏览Paperspace提供的关于Whisper的综合文章。此外,请点击演示链接,利用Paperspace的免费GPU服务亲身体验该模型。

大视觉模型

大型视觉模型(LVM)的出现标志着一个重大转变,挑战了大型语言模型(LLM)的主导地位。尽管GPT-3等LLM无疑改变了自然语言处理,但LVM正在为人工智能的新时代铺平道路,将其能力扩展到视觉领域。在这篇文章中,我们将深入研究什么是LVM,它们是如何工作的,它们的应用程序,挑战,以及为什么它们代表了人工智能的未来。

理解大型视觉模型

大型视觉模型是一类人工智能模型,旨在理解和解释视觉信息,类似于大型语言模型处理文本数据的方式。LVM基于深度学习的原理,利用具有大量参数的神经网络来分析和理解视觉内容。与依赖于手动创建的特征的传统计算机视觉模型不同,LVM被设计为从广泛的数据集中自动学习分层结构。这使他们能够检测图像中复杂的模式和连接。

大型视觉模型是如何工作的?

大型视觉模型使用卷积神经网络(CNNs),它非常擅长识别图像。LVM有多个层,以类似于人类视觉的方式处理视觉信息。每一层都从图像中提取不同的特征。

在训练过程中,向模型提供包含标记图像的海量数据集,使其能够通过反向传播学习和细化参数。这种广泛的训练过程使模型能够很好地概括从物体识别到场景理解的各种视觉任务。

[大语言模型] Mistral 7B 模型介绍

Mistral人工智能团队很自豪地发布了Mistral 7B,这是迄今为止最强大的语言模型。

Mistral 7B 简述

Mistral 7B是一个7.3B参数模型,它:

  • 在所有基准测试中均超过Llama 2 13B
  • 在许多基准测试中表现超过Llama 1 34B
  • 接近CodeLlama 7B的代码性能,同时保持良好的英语任务
  • 使用分组查询注意力(GQA)进行更快的推理
  • 使用滑动窗口注意力(SWA)以较小的成本处理较长的序列
  • 我们将在Apache 2.0许可证下发布Mistral 7B,它可以不受限制地使用。
  • 下载它并在任何地方(包括本地)使用我们的参考实现,
  • 使用vLLM推理服务器和skypilot在任何云(AWS/GCP/Azure)上部署它,
  • 在HuggingFace上使用。

Mistral 7B很容易在任何任务中进行微调。作为演示,我们提供了一个针对聊天进行微调的模型,它的性能优于Llama 2 13B聊天。