跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(82) LLM(75) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(33) Go基础(29) Python(24) Vue(22) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) ChatGPT(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) whisper(6) Prisma(6) 隐私保护(6) RAG(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) 智能体(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) kafka(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) nextjs(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 大型语言模型(2) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

通过构建和利用知识图谱来提高基于RAG的应用程序的准确性

在使用Neo4j和LangChain的RAG应用程序中构建和检索知识图信息的实用指南


编者按:以下是Tomaz Bratanic的客座博客文章,他专注于Neo4j的Graph ML和GenAI研究。Neo4j是一家图形数据库和分析公司,它帮助组织深入、轻松、快速地发现数十亿数据连接中隐藏的关系和模式。


图检索增强生成(Graph RAG)作为传统矢量搜索检索方法的强大补充,正在获得发展势头。这种方法利用了图数据库的结构化特性,将数据组织为节点和关系,以增强检索信息的深度和上下文性。

 

【LangChain开发】LangChain是基于LLM的应用程序的过去,这是未来

LLM

我最近遇到了EmbeddChain,这是一个使用LLM构建聊天机器人的框架,可以与各种类型的数据交互,如YouTube视频、PDF、网页、docx文件、文档和Notion笔记。与LangChain或Llama Index等替代品相比,它的与众不同之处在于其令人难以置信的用户友好界面。

接下来,我将概述EmbedChain的一些实际应用。但在进入之前,您需要安装模块:

pip install embedchain

用例1:与你可以使用的维基百科内容对话

EmbeddChain与维基百科文章进行互动对话。你所需要做的就是配置你的OpenAI API密钥,指定你想要与之互动的文章,并开始提出你的问题。在幕后,EmbedChain处理嵌入和索引的创建,同时管理整个检索增强生成(RAG)系统。

【LangChain】与文档聊天:将OpenAI与LangChain集成的终极指南

欢迎来到人工智能的迷人世界,在那里,人与机器之间的通信越来越模糊。在这篇博客文章中,我们将探索人工智能驱动交互的一个令人兴奋的新前沿:与您的文本文档聊天!借助OpenAI模型和创新的LangChain框架的强大组合,您现在可以将静态文档转化为交互式对话。

你准备好彻底改变你使用文本文件的方式了吗?然后系好安全带,深入了解我们将OpenAI与LangChain集成的终极指南,我们将一步一步地为您介绍整个过程。

什么是LangChain?

LangChain是一个强大的框架,旨在简化大型语言模型(LLM)应用程序的开发。通过为各种LLM、提示管理、链接、数据增强生成、代理编排、内存和评估提供单一通用接口,LangChain使开发人员能够将LLM与真实世界的数据和工作流无缝集成。该框架允许LLM通过合并外部数据源和编排与不同组件的交互序列,更有效地解决现实世界中的问题。

我们将在下面的示例应用程序中使用该框架从文本文档源生成嵌入,并将这些内容持久化到Chroma矢量数据库中。然后,我们将使用LangChain在后台使用OpenAI语言模型来查询用户提供的问题,以处理请求。

这将使我们能够与自己的文本文档聊天。

在Jupyter笔记本中使用Python语言链在Mac上运行GPT4All

在过去的三周左右时间里,我一直在关注本地运行的大型语言模型(LLM)的疯狂开发速度,从llama.cpp开始,然后是alpaca,最近是(?!)gpt4all。

在那段时间里,我的笔记本电脑(2015年年中的Macbook Pro,16GB)在修理厂里呆了一个多星期,直到现在我才真正有了一个快速的游戏机会,尽管我10天前就知道我想尝试什么样的东西,而这在过去几天才真正成为可能。

根据这个要点,以下脚本可以作为Jupyter笔记本下载 this gist.

【langchain】在单个文档知识源的上下文中使用langchain对GPT4All运行查询

In the previous post, Running GPT4All On a Mac Using Python langchain in a Jupyter Notebook, 我发布了一个简单的演练,让GPT4All使用langchain在2015年年中的16GB Macbook Pro上本地运行。在这篇文章中,我将提供一个简单的食谱,展示我们如何运行一个查询,该查询通过从单个基于文档的已知源检索的上下文进行扩展。

I’ve updated the previously shared notebook here to include the following…

基于文档的知识源支持的示例查询

使用langchain文档中的示例进行示例文档查询。

【LLM】LangChian自动评估( Auto-Evaluator )机会

Auto-Evaluator Opportunities

编者按:这是兰斯·马丁的一篇客座博客文章。

TL;DR

我们最近开源了一个自动评估工具,用于对LLM问答链进行评分。我们现在发布了一个开源、免费的托管应用程序和API,以扩展可用性。下面我们将讨论一些进一步改进的机会。

上下文

文档问答是一个流行的LLM用例。LangChain可以轻松地将LLM组件(例如,模型和检索器)组装成支持问答的链:输入文档被分割成块并存储在检索器中,在给定用户问题的情况下检索相关块并传递给LLM以合成答案。

问题

质量保证系统的质量可能有很大差异;我们已经看到由于特定的参数设置而产生幻觉和回答质量差的情况。但是,(1)评估答案质量和(2)使用此评估来指导改进的QA链设置(例如,块大小、检索到的文档数)或组件(例如,模型或检索器选择)并不总是显而易见的。

【LangChain 】LangChain 计划和执行代理

TL;DR:我们正在引入一种新型的代理执行器,我们称之为“计划和执行”。这是为了与我们以前支持的代理类型形成对比,我们称之为“Action”代理。计划和执行代理在很大程度上受到了BabyAGI和最近的计划和解决论文的启发。我们认为Plan and Execute非常适合更复杂的长期规划,但代价是需要调用更多的语言模型。我们正在将其初始版本放入实验模块,因为我们预计会有快速的变化。

链接:

到目前为止,LangChain中的所有代理都遵循ReAct文件开创的框架。让我们称之为“行动特工”。这些算法可以大致用以下伪代码表示: