跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(82) LLM(75) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(33) Go基础(29) Python(24) Vue(22) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) ChatGPT(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) whisper(6) Prisma(6) 隐私保护(6) RAG(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) 智能体(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) kafka(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) nextjs(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 大型语言模型(2) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

使用Cohere的 Command R自托管RAG应用程序

Cohere的Command R在检索增强生成(RAG)和工具使用任务方面拥有高精度。它提供低延迟和高吞吐量,具有长的128k令牌上下文长度。此外,它还展示了10种关键语言的强大多语能力。

在这个工作室里,我们正在构建一个完全自主托管的“与您的文档聊天”RAG应用程序,使用:

  • -Cohere的“R”在当地使用Ollama服务。
  • -Qdrant矢量数据库(自托管)
  • -用于生成嵌入的Fastembed

下面是我们正在构建的内容的快速演示:

https://youtu.be/aLLw3iCPhtM

通过构建和利用知识图谱来提高基于RAG的应用程序的准确性

在使用Neo4j和LangChain的RAG应用程序中构建和检索知识图信息的实用指南


编者按:以下是Tomaz Bratanic的客座博客文章,他专注于Neo4j的Graph ML和GenAI研究。Neo4j是一家图形数据库和分析公司,它帮助组织深入、轻松、快速地发现数十亿数据连接中隐藏的关系和模式。


图检索增强生成(Graph RAG)作为传统矢量搜索检索方法的强大补充,正在获得发展势头。这种方法利用了图数据库的结构化特性,将数据组织为节点和关系,以增强检索信息的深度和上下文性。

 

【LLM】人工智能驱动的医学知识:罕见疾病护理的革命性变革

[编者按]:这是杰克·西蒙的客串帖子,他最近参加了威廉姆斯学院的黑客马拉松。他构建了一个由LangChain驱动的聊天机器人,重点关注阑尾癌症,旨在让有需要的人更容易获得专业知识。如果你有兴趣为另一种罕见的情况构建聊天机器人,请联系jms9@williams.edu.

我们之所以强调这一点,是因为我们认为这是问答系统的一个极好且不受重视的用例。虽然底层技术可能与其他问答应用程序类似,但我们发现这种用例对社会的影响特别大。

上周,我参加了威廉姆斯学院的一场黑客马拉松,在那里我建立了一个聊天机器人,它改变了我们获取罕见疾病信息的方式。通过结合文献综述、临床试验数据和学术论文,我创建了一个由LangChain驱动的聊天机器人,它可以提供有关一种特殊罕见疾病——阑尾癌症的宝贵信息。

 


虽然这个演示侧重于一种罕见的疾病,但我计划通过添加尽可能多的罕见疾病信息来扩展聊天机器人的知识库。最终愿景是创建一个人工智能驱动的应用程序,为患者和医疗保健专业人员提供可靠的信息来源。

【LLM】利用特定领域知识库中的LLM

通过RAG致富:利用LLM的力量,使用检索增强生成与您的数据对话

问ChatGPT一个关于“马拉松”一词起源的问题,它会准确地告诉你希罗多德是如何描述费迪皮德斯从马拉松到雅典完成的42公里传奇长跑的,然后筋疲力尽。

但我祖母的食谱清单呢?当然,我可以把这些食谱数字化,没问题。但是,如果我想根据冰箱里的食材、我最喜欢的颜色和我一天的心情,就准备哪顿饭提出建议,该怎么办?

让我们看看这是否有可能在不因精疲力竭而崩溃的情况下实现。

LLM,达到你的极限…并超越它们

LLM是一种大型语言模型。OpenAI的GPT-4是一个例子,Meta的LLamA是另一个例子。我们在这里有意识地选择使用一般LLM术语来指代这些模型。请记住:这些模型中的每一个都是在一组庞大的(公开可用的)数据上进行训练的。

到目前为止,已经清楚地表明,这些LLM对通用语言有着有意义的理解,并且他们能够(重新)产生与训练数据中存在的信息相关的信息。这就是为什么像ChatGPT这样的生成工具在回答LLM在培训过程中遇到的主题问题方面表现惊人。