跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(79) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

【LLM架构】Dify与Ragflow的比较

Dify与Ragflow:LLM应用程序开发的关键差异


使用大型语言模型(LLM)的应用程序开发随着Dify和Ragflow等平台的发展而显著发展。了解这两者之间的关键区别可以帮助开发人员根据自己的需求选择合适的工具。

数据准备


Dify通过提供数据收集和预处理的集成工具,在数据准备方面表现出色。这最大限度地减少了对大量编码的需求,使开发人员能够专注于更高级别的任务。相比之下,Ragflow可能需要在数据清理和注释方面进行更多的手动干预,这可能会减缓开发过程。

提示工程


Dify提供了一个所见即所得(WYSIWYG)界面,用于快速编辑和调试。此功能允许基于用户输入进行实时优化,使在没有深厚技术知识的情况下更容易细化提示。Ragflow虽然功能强大,但可能无法提供相同水平的用户友好的快速工程工具,这可能会导致新用户的学习曲线更陡峭。

嵌入和上下文管理


借助Dify,嵌入和上下文管理实现了自动化,从而增强了可扩展性和效率。开发人员不需要编写大量代码来管理长上下文,因为Dify可以无缝地处理这个问题。另一方面,Ragflow可能需要更多的手动编码来实现类似的结果,这可能会增加开发时间和复杂性。

【RAG架构】RAG的四个层次——微软的研究

改进检索增强生成(RAG)涉及基于用户意图和关注上下文对查询进行分类。还利用SLM和微调来提供更准确和相关的结果。

简而言之


选择正确的RAG(检索增强生成)架构主要取决于具体的用例和实现要求,确保系统与任务需求保持一致。

Agent RAG的重要性将越来越高,与Agent X的概念相一致,其中Agent能力嵌入个人助理、工作流程和流程中。

在这里,“X”代表了代理系统的无限适应性,实现了无缝的任务自动化和跨不同环境的知情决策,以提高组织效率和自主性。

综合不同的文档源对于有效解决复杂的多部分查询至关重要。

介绍


提供准确的RAG实施的挑战包括检索相关数据、准确解释用户意图,以及利用LLM的推理能力完成复杂任务。

推理可以通过像ReAct这样的RAG代理方法来增强,在这种方法中,可以创建事件的推理和行为序列。

我从这项研究中发现了一个有趣的事实,即它指出没有一种单一的解决方案适用于所有数据增强的LLM应用程序。

上下文是指围绕对话的信息,帮助人工智能理解用户的意图并提供相关、连贯的回应。

这包括用户之前的输入、当前任务、环境以及可能影响对话的任何外部数据等因素。

【RAG架构】RAG的最佳实践

RAG的过程很复杂,包含许多组件。我们如何确定现有的RAG方法及其最佳组合,以确定最佳的RAG实践?

本文介绍了一项名为“搜索增强生成检索的最佳实践”的新研究。本研究旨在解决这个问题。

本文主要分为四个部分。首先,介绍了典型的RAG工艺。接下来,它介绍了每个RAG模块的最佳实践。然后,它提供了一个全面的评估。最后,它分享了我的想法和见解,并以总结结束。

典型RAG工作流程