跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(79) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

category

使用postgres作为后端并利用pgvector扩展的LangChain向量库抽象的实现。

The code lives in an integration package called: langchain_postgres.

您可以运行以下命令来启动具有pgvector扩展名的postgres容器:

docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16

Status

这段代码已经从langchain_community移植到一个名为langchain-postgres的专用包中。已进行以下更改:

  • langchain_postgres仅适用于psycopg3。请从postgresql+psycopg2://...更新您的连接字符串。。。到postgresql+psycopg://langchain:langchain@... (是的,它的驱动程序名称是psycopg而不是psycopg3,但它将使用psycopg3。
  • 嵌入存储和集合的架构已经更改,以使add_documents能够正确使用用户指定的id。
  • 现在必须传递一个显式连接对象。

目前,还没有任何机制支持在模式更改时轻松地进行数据迁移。因此,vectorstore中的任何模式更改都需要用户重新创建表并重新添加文档。如果这是一个问题,请使用其他向量库。如果没有,这个实现应该适合您的用例。

Install dependencies

Here, we’re using langchain_cohere for embeddings, but you can use other embeddings providers.

!pip install --quiet -U langchain_cohere
!pip install --quiet -U langchain_postgres

Initialize the vectorstore

from langchain_cohere import CohereEmbeddings
from langchain_core.documents import Document
from langchain_postgres import PGVector
from langchain_postgres.vectorstores import PGVector

# See docker command above to launch a postgres instance with pgvector enabled.
connection = "postgresql+psycopg://langchain:langchain@localhost:6024/langchain"  # Uses psycopg3!
collection_name = "my_docs"
embeddings = CohereEmbeddings()

vectorstore = PGVector(
    embeddings=embeddings,
    collection_name=collection_name,
    connection=connection,
    use_jsonb=True,
)

Drop tables

If you need to drop tables (e.g., updating the embedding to a different dimension or just updating the embedding provider):

vectorstore.drop_tables()

Add documents

Add documents to the vectorstore

docs = [
    Document(
        page_content="there are cats in the pond",
        metadata={"id": 1, "location": "pond", "topic": "animals"},
    ),
    Document(
        page_content="ducks are also found in the pond",
        metadata={"id": 2, "location": "pond", "topic": "animals"},
    ),
    Document(
        page_content="fresh apples are available at the market",
        metadata={"id": 3, "location": "market", "topic": "food"},
    ),
    Document(
        page_content="the market also sells fresh oranges",
        metadata={"id": 4, "location": "market", "topic": "food"},
    ),
    Document(
        page_content="the new art exhibit is fascinating",
        metadata={"id": 5, "location": "museum", "topic": "art"},
    ),
    Document(
        page_content="a sculpture exhibit is also at the museum",
        metadata={"id": 6, "location": "museum", "topic": "art"},
    ),
    Document(
        page_content="a new coffee shop opened on Main Street",
        metadata={"id": 7, "location": "Main Street", "topic": "food"},
    ),
    Document(
        page_content="the book club meets at the library",
        metadata={"id": 8, "location": "library", "topic": "reading"},
    ),
    Document(
        page_content="the library hosts a weekly story time for kids",
        metadata={"id": 9, "location": "library", "topic": "reading"},
    ),
    Document(
        page_content="a cooking class for beginners is offered at the community center",
        metadata={"id": 10, "location": "community center", "topic": "classes"},
    ),
]

vectorstore.add_documents(docs, ids=[doc.metadata["id"] for doc in docs])

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

vectorstore.similarity_search("kitty", k=10)

[Document(page_content='there are cats in the pond', metadata={'id': 1, 'topic': 'animals', 'location': 'pond'}),
 Document(page_content='the book club meets at the library', metadata={'id': 8, 'topic': 'reading', 'location': 'library'}),
 Document(page_content='the library hosts a weekly story time for kids', metadata={'id': 9, 'topic': 'reading', 'location': 'library'}),
 Document(page_content='the new art exhibit is fascinating', metadata={'id': 5, 'topic': 'art', 'location': 'museum'}),
 Document(page_content='ducks are also found in the pond', metadata={'id': 2, 'topic': 'animals', 'location': 'pond'}),
 Document(page_content='the market also sells fresh oranges', metadata={'id': 4, 'topic': 'food', 'location': 'market'}),
 Document(page_content='a cooking class for beginners is offered at the community center', metadata={'id': 10, 'topic': 'classes', 'location': 'community center'}),
 Document(page_content='fresh apples are available at the market', metadata={'id': 3, 'topic': 'food', 'location': 'market'}),
 Document(page_content='a sculpture exhibit is also at the museum', metadata={'id': 6, 'topic': 'art', 'location': 'museum'}),
 Document(page_content='a new coffee shop opened on Main Street', metadata={'id': 7, 'topic': 'food', 'location': 'Main Street'})]

Adding documents by ID will over-write any existing documents that match that ID.

docs = [
    Document(
        page_content="there are cats in the pond",
        metadata={"id": 1, "location": "pond", "topic": "animals"},
    ),
    Document(
        page_content="ducks are also found in the pond",
        metadata={"id": 2, "location": "pond", "topic": "animals"},
    ),
    Document(
        page_content="fresh apples are available at the market",
        metadata={"id": 3, "location": "market", "topic": "food"},
    ),
    Document(
        page_content="the market also sells fresh oranges",
        metadata={"id": 4, "location": "market", "topic": "food"},
    ),
    Document(
        page_content="the new art exhibit is fascinating",
        metadata={"id": 5, "location": "museum", "topic": "art"},
    ),
    Document(
        page_content="a sculpture exhibit is also at the museum",
        metadata={"id": 6, "location": "museum", "topic": "art"},
    ),
    Document(
        page_content="a new coffee shop opened on Main Street",
        metadata={"id": 7, "location": "Main Street", "topic": "food"},
    ),
    Document(
        page_content="the book club meets at the library",
        metadata={"id": 8, "location": "library", "topic": "reading"},
    ),
    Document(
        page_content="the library hosts a weekly story time for kids",
        metadata={"id": 9, "location": "library", "topic": "reading"},
    ),
    Document(
        page_content="a cooking class for beginners is offered at the community center",
        metadata={"id": 10, "location": "community center", "topic": "classes"},
    ),
]

Filtering Support

The vectorstore supports a set of filters that can be applied against the metadata fields of the documents.

Operator Meaning/Category
\$eq Equality (==)
\$ne Inequality (!=)
\$lt Less than (\<)
\$lte Less than or equal (\<=)
\$gt Greater than (>)
\$gte Greater than or equal (>=)
\$in Special Cased (in)
\$nin Special Cased (not in)
\$between Special Cased (between)
\$like Text (like)
\$ilike Text (case-insensitive like)
\$and Logical (and)
\$or Logical (or)
vectorstore.similarity_search("kitty", k=10, filter={"id": {"$in": [1, 5, 2, 9]}})

[Document(page_content='there are cats in the pond', metadata={'id': 1, 'topic': 'animals', 'location': 'pond'}),
 Document(page_content='the library hosts a weekly story time for kids', metadata={'id': 9, 'topic': 'reading', 'location': 'library'}),
 Document(page_content='the new art exhibit is fascinating', metadata={'id': 5, 'topic': 'art', 'location': 'museum'}),
 Document(page_content='ducks are also found in the pond', metadata={'id': 2, 'topic': 'animals', 'location': 'pond'})]

If you provide a dict with multiple fields, but no operators, the top level will be interpreted as a logical AND filter

vectorstore.similarity_search(
    "ducks",
    k=10,
    filter={"id": {"$in": [1, 5, 2, 9]}, "location": {"$in": ["pond", "market"]}},
)

[Document(page_content='ducks are also found in the pond', metadata={'id': 2, 'topic': 'animals', 'location': 'pond'}),
 Document(page_content='there are cats in the pond', metadata={'id': 1, 'topic': 'animals', 'location': 'pond'})]

vectorstore.similarity_search(
    "ducks",
    k=10,
    filter={
        "$and": [
            {"id": {"$in": [1, 5, 2, 9]}},
            {"location": {"$in": ["pond", "market"]}},
        ]
    },
)

[Document(page_content='ducks are also found in the pond', metadata={'id': 2, 'topic': 'animals', 'location': 'pond'}),
 Document(page_content='there are cats in the pond', metadata={'id': 1, 'topic': 'animals', 'location': 'pond'})]

vectorstore.similarity_search("bird", k=10, filter={"location": {"$ne": "pond"}})

[Document(page_content='the book club meets at the library', metadata={'id': 8, 'topic': 'reading', 'location': 'library'}),
 Document(page_content='the new art exhibit is fascinating', metadata={'id': 5, 'topic': 'art', 'location': 'museum'}),
 Document(page_content='the library hosts a weekly story time for kids', metadata={'id': 9, 'topic': 'reading', 'location': 'library'}),
 Document(page_content='a sculpture exhibit is also at the museum', metadata={'id': 6, 'topic': 'art', 'location': 'museum'}),
 Document(page_content='the market also sells fresh oranges', metadata={'id': 4, 'topic': 'food', 'location': 'market'}),
 Document(page_content='a cooking class for beginners is offered at the community center', metadata={'id': 10, 'topic': 'classes', 'location': 'community center'}),
 Document(page_content='a new coffee shop opened on Main Street', metadata={'id': 7, 'topic': 'food', 'location': 'Main Street'}),
 Document(page_content='fresh apples are available at the market', metadata={'id': 3, 'topic': 'food', 'location': 'market'})]


Help us out by providing feedback on this documentation page: