跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(82) LLM(78) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(33) Go基础(29) Python(24) Vue(22) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 智能体(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) nextjs(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) RAG架构(3) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

Python中隐私过滤器的实现,该过滤器通过命名实体识别(NER)删除个人身份信息(PII)

这是我上一篇关于从文本中删除个人信息的文章的后续内容。

GDPR是欧盟制定的《通用数据保护条例》。其目的是保护所有欧洲居民的数据。保护数据也是开发人员的内在价值。通过控制对列和行的访问,保护行/列数据结构中的数据相对容易。但是免费文本呢?

在我上一篇文章中,我描述了一个基于正则表达式用法和禁止词列表的解决方案。在本文中,我们添加了一个基于命名实体识别(NER)的实现。完整的实现可以在github PrivacyFilter项目中找到。

什么是命名实体识别?

根据维基百科,NER是:

命名实体识别(NER)(也称为(命名)实体识别、实体分块和实体提取)是信息提取的一个子任务,旨在定位非结构化文本中提到的命名实体,并将其分类为预定义的类别,如人名、组织、位置、医疗代码、时间表达式、数量、货币值、百分比等。

因此,这一切都是关于寻找和识别文本中的实体。一个实体可以是一个单词或一系列连续的单词。实体被分类到预定义的类别中。例如,在下面的句子中,发现了三个实体:实体人“Sebastian Thrun”、实体组织“Google”和实体日期“2007”。

NLP

Example entity recognition (source: Spacy.io)

NER是自然语言处理(NLP)人工智能领域的一个子集。该领域包含处理和分析自然语言的算法。当NER能够用自然语言识别实体时,如果是个人、组织、日期或地点等与隐私相关的实体,则可以从文本中删除这些实体。

使用NER过滤PII

首先,我们需要一个NLP处理包。NLP包是按语言训练的,因为所有语言都有自己的语法。我们正在与达奇合作,所以我们需要一个了解这一点的人。我们将使用Spacy作为我们的隐私过滤器。

在Spacy网站上可以找到一个帮助安装Spacy的工具。在选择Python环境和语言后,它会给出相应的命令来安装Spacy:

NLP

Spacy install tool (source: Spacy.io)

所选管道(效率或精度)决定了NER模型相对于尺寸和速度的精度。选择“效率”会产生更小、更快的模型,但与“精度”相比精度更低。这取决于您的用例哪个模型更合适。为了发展,我们选择使用效率模型。进行第一次净入学率分析:

import spacy
nlp = spacy.load("nl_core_news_sm")
doc = nlp("Geert werkt sinds 2010 voor HAL.")
for token in doc:
    print(token.text, token.pos_, token.ent_type_)

'''
Output:
Geert PROPN PERSON
werkt VERB 
sinds ADP 
2010 NUM DATE
voor ADP 
HAL PROPN ORG
. PUNCT 
'''

在第2行导入Spacy包之后,将使用Spacy.load()方法加载模型。在这种情况下,加载了Dutch的有效模型。模型由其名称指定,该名称与上一步中用于下载模型的名称相同。要切换到准确的荷兰语模型,请将“nl_core_news_sm”替换为“nl_core _news_lg”。对于上面的示例,这将产生相同的输出。

快速、简单的性能测试表明,加载小型模型大约需要2.0秒,加载大型模型大约需要4.5秒。分析一个句子需要5.5毫秒,而不是6.0毫秒。大型号似乎需要大约500 MB的额外内存。

词性(POS)标签的含义可以在这个网站上找到。例如,它们是:

Geert PROPN PERSON     Proper noun, person
werkt VERB             Verb
sinds ADP              Adposition, case marking
2010  NUM DATE         Numeral, date
voor  ADB              Adposition
HAL   PROPN ORG        Proper noun, organisation
.     PUNCT            Punctuation

对于过滤PII,我们对POS类型NUM和PROPN感兴趣。我们将用描述其实体类型的标签来替换POS文本元素。

import spacy

string = "Geert werkt sinds 2010 voor HAL."
print(string)
nlp = spacy.load("nl_core_news_sm")
doc = nlp(string)

filtered_string = ""
for token in doc:
    if token.pos_ in ['PROPN', 'NOUN', 'NUM']:
        new_token = " <{}>".format(token.ent_type_)
    elif token.pos_ == "PUNCT":
        new_token = token.text
    else:
        new_token = " {}".format(token.text)
    filtered_string += new_token
filtered_string = filtered_string[1:]
print(filtered_string)

'''
Output:
Geert werkt sinds 2010 voor HAL.
<PERSON> werkt sinds <NUMBER> voor <ORG>.
'''

代码的第一部分加载语言模型,并将输入字符串解析为令牌列表(doc)。第8-16行中的循环通过迭代文档中的所有标记来构建过滤后的文本。如果令牌的类型为PROPN、NOUN或NUMBER,则会用标记<…>替换,其中标记等于Spacy识别的实体类型。所有令牌都通过前缀空间连接到新字符串。前缀是必需的,因为标记化字符串已经删除了这些前缀。如果是标点符号,则不添加前缀空格(第12-13行)。

在循环之后,由于第11行或第13行的原因,新字符串的第一个字符是一个空格,因此我们需要删除这个空格(第17行)。这导致字符串中没有隐私信息。

它有多好?

在上一篇文章中,我们已经建立了一个基于禁止词列表的隐私过滤器。与NER相比,该学徒需要更多的代码和精力。但它们的比较如何?

  • NER要求语法正确的句子。在这种情况下,即使姓名拼写错误,也可以很好地替换隐私信息。NER优于禁言表。
  • 无论上下文如何,禁词过滤器都会替换禁词。尤其是街道名称和城市名称的列表会导致大量不必要的删除词。例如,植物名称、动物或城堡等项目等单词作为街道名称很常见,将从文本中删除。这可能会删除许多不必要的单词,从而降低生成文本的可用性。NER的表现会更好。
  • 如果文本在语法上不正确(例如,“你叫什么名字?”问题的答案“Peter”将不会被NER过滤为正确。这些句子在聊天信息和对话记录中很常见。在这些情况下,NER方法将失败,因为NER算法无法用一个或几个词来确定这些答案的性质。

因此,这完全取决于您的用例和所需的过滤级别。该组合确定最佳方法是使用禁止列表版本、NER版本还是甚至两者的组合。后者将结合这两种方法的优点(但也有部分缺点)。要找到最佳方法,请使用数据的子集来筛选和测试不同的算法和/或组合,以找到最适合的算法。

将NER与禁止词列表(FWL)进行比较的一些示例:

INPUT: Geert werkt sinds 2010 voor HAL.
NER  : <FILTERED> werkt sinds <FILTERED> voor <FILTERED>.
FWL  : <FILTERED> werkt sinds <FILTERED> voor HAL.
INPUT: Heert werkt sinds 2010 voor HAL.
NER  : <FILTERED> werkt sinds <FILTERED> voor <FILTERED>.
FWL  : Heert werkt sinds <FILTERED> voor HAL.
INPUT: Wat is je naam? Geert.
NER  : Wat is je naam? Geert.
FWL  : Wat is je naam? FILTERED.
INPUT: Geert kijkt naar de duiven op het dak.
NER  : <FILTERED> kijkt naar de duiven op het dak.
FWL  : <FILTERED> kijkt naar de <FILTERED> op het dak.

(为了便于比较,所有标签(如<PERSON>)都替换为通用标签<FILTERED>)

  • 第一个示例显示tat FWL无法删除公司名称,因为它没有公司名称列表。NER算法在句子上确定了“HAL”是一个名词,更具体地说是一个组织。
  • 第二个例子表明,NER可以处理名称中的类型错误,因为它查看句子的结构,而FWL不将“Heert”识别为名称。名称列表只包含拼写正确的版本。
  • 第三个例子表明,NER需要语法正确的句子来识别“Geert”这个名字。这可能是一次谈话的记录,也可能是聊天中的互动。它展示了NER如何在书面语言方面表现良好,但在理解口语方面存在困难。
  • 在最后一个例子中,FWL删除了“duiven”一词,因为它不仅描述了动物(duiven在荷兰语中是鸽子的意思),而且还是一个城市的名字。

privacy filter code on Github 包含这两种方法,在初始化过程中可以选择NER方法或FWL方法。我们在本文中没有涉及正则表达式,但选择NER方法也会执行正则表达式(NER无法识别和替换URL等)。它还包含了一些使用和过滤的示例文本,以了解两种方法在现实生活中的美国案例中的差异。

最后一句话

本文和前一篇文章描述了删除文本中个人信息的两种方法。这两种方法都有其优点和缺点,不可能为所有用例选择一种方法。删除更多的隐私信息也会导致删除更多的非隐私信息,从而降低过滤文本的价值。NER在删除已识别的隐私信息方面更准确,但需要格式良好的句子才能操作。为了最大限度地提高安全性,甚至可以将这两种方法结合起来。请随意在Github上尝试实现。

我希望你喜欢这篇文章。想要获得更多灵感,请查看我的其他文章:

文章链接